

# RAÇA OVINA CAMPANIÇA AVALIAÇÃO GENÉTICA 2023

Instituto Nacional de Investigação Agrária e Veterinária, I.P.
Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos
Estação Zootecnica Nacional – Fonte Boa

## Raça ovina Campaniça – Avaliação Genética 2023

#### Nuno Carolino

Instituto Nacional de Investigação Agrária e Veterinária, I.P. Estação Zootécnica Nacional Polo de Investigação da Fonte Boa Fonte Boa, 2005-048 Vale de Santarém PORTUGAL





## Claudino Matos e Filipa Taniças

ACOS - Associação de Agricultores do Sul Rua Cidade S. Paulo, n.º 36 - Apart. 296 7801-904 BEJA PORTUGAL Tel: 284 310350 FAX: 284 323439

e-mail: <a href="mailto:geral@acos.pt">geral@acos.pt</a>
<a href="mailto:http://www.acos.pt/">http://www.acos.pt/</a>



#### **Manuel Silveira**

**Ruralbit, Lda**Av. Dr. Domingos Gonçalves Sá, 132, Ent1, 5º Esq
4435-213 Rio Tinto
PORTUGAL

Tel: (+351) 302 008 332 Fax: (+351) 224 107 440 geral@ruralbit.pt/ http://www.ruralbit.pt/



| ovina Campaniça – Avaliação | Genética 2023 | <br> | ça ovina Campaniça – Avaliação Genética 2023 |  |  |  |  |  |  |  |  |
|-----------------------------|---------------|------|----------------------------------------------|--|--|--|--|--|--|--|--|
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |
|                             |               |      |                                              |  |  |  |  |  |  |  |  |

3

Carolino N., Matos C., Taniças F. e Silveira M. (2023). Raça ovina Campaniça – Avaliação Genética 2023. Instituto Nacional de Investigação Agrária e Veterinária, Polo de Investigação da Fonte Boa, Portugal.

## Introdução

A avaliação genética 2023 da raça Campaniça foi elaborada na Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos — Estação Zootécnica, do Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), a partir de toda a informação de campo recolhida pela Associação de Agricultores do Sul (ACOS) e pelos criadores associados, nomeadamente, registos de genealogias, partos, pesos e contraste lanares, tendo-se considerado as seguintes características:

- Prolificidade (Prol)
- > Capacidade maternal até aos 30 dias (P30ma)
- Capacidade de crescimento até aos 30 dias (P30di)
- Capacidade maternal até aos 90 dias (P90ma)
- Capacidade de crescimento até aos 90 dias (P90di)
- Espessura da lã
- Comprimento da lã

Com os resultados da Avaliação Genética da raça Campaniça e da sua divulgação, pretendem-se facultar informação sobre o potencial genético de qualquer animal da raça e sobre as performances produtivas dos vários rebanhos, permitindo, assim, que criadores, técnicos e outros agentes ligados ao sector efetuem diversos tipos de consultas e que sirva de apoio à tomada de decisão. Pretende-se que os criadores possam selecionar de uma forma objetiva os futuros reprodutores, ou seja, com base no potencial genético ou no que cada reprodutor pode vir a transmitir à descendência.

Todos os caracteres foram submetidos a análises univariadas, através do BLUP - Modelo Animal, utilizando-se para o efeito o programa informático MTDFREML. Esta metodologia permite estimar os valores genéticos de cada animal para os vários tipos de caracteres considerados, tendo em conta a sua performance, no caso de ser conhecida, e as performances de todos os seus parentes (ascendentes, descendentes e colaterais), levando em consideração os diversos efeitos ambientais que afetam o respetivo caracter.

## Expressão dos Resultados

O valor genético de um animal para determinado caracter, independentemente de ser fêmea ou macho, representa o valor desse animal como reprodutor (expresso nas respetivas unidades de medida, isto é, kg, borrego por parto, etc.) e deve ser interpretado como a superioridade ou inferioridade genética para a característica em causa relativamente à média da população.

**Exemplo 1**: O valor genético de uma ovelha para a prolificidade de +0.1 borregos por parto, significa que, se esta ovelha for acasalada com um carneiro "médio" da raça, esperamos que a sua descendência tenha, em média, prolificidade de +0.05 borregos por parto que a média de todas as ovelhas incluídas na avaliação genética, uma vez que um indivíduo transmite à sua descendência apenas metade do seu valor genético.

**Exemplo 2**: Utilizando também como exemplo os valores genéticos para a capacidade maternal do peso aos 90 dias, comparando dois machos, em que o 1º tem um valor genético de +2 kg e o 2º macho um valor genético de -2 kg (diferença de 4 kg entre o 1º e o 2º macho), espera-se que, se forem acasalados com as mesmas fêmeas, as filhas do 1º macho venham a desmamar descendentes 2 kg mas pesados que a filhas do 2 macho. Isto é, o 1º macho irá transmitir às duas filhas uma maior capacidade maternal, que se irá refletir no peso aos 90 dias dos seus descendentes.

A precisão da estimativa do valor genético dá-nos a ideia da confiança com que estimámos o valor genético do animal para determinado caracter; contudo, não se trata de um indicador do

potencial genético do animal. Quanto mais informação sobre o animal (por exemplo, vários registos) e sobre os seus parentes (mãe, pai, irmãos, filhos, avós, etc.) houver, mais precisa será a estimativa do seu valor genético.

Os valores genéticos para a prolificidade são tanto melhores quanto maiores forem esses valores (mais positivos). Pretende-se que as fêmeas tenham uma prolificidade elevada e que os reprodutores (machos e fêmeas) transmitam aos descendentes esta capacidade.

Os valores genéticos para a capacidade maternal e para a capacidade de crescimentos são tanto melhores quanto maiores forem esses valores (mais positivos). Pretende-se que as fêmeas tenham uma boa capacidade maternal para criar os filhos e que transmitam uma boa capacidade de crescimento até ao desmame. Da mesma forma, pretende-se que um macho transmita uma boa capacidade maternal e de crescimentos aos filhos.

Os valores genéticos para a Espessura e Comprimento da Lã são tanto melhores quanto maiores forem esses valores (mais positivos). Pretende-se que os animais tenham velhos com fibras mais finas e mais compridas.

Para a raça Campaniça será importante que os reprodutores tenham, no mínimo, valor genético positivo para a prolificidade (Prol) e para a capacidade maternal aos 90 dias (P90ma).

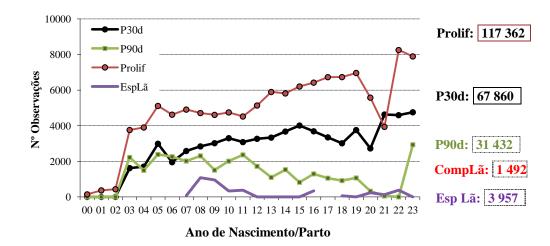



Figura 1 – Número de registos utilizados na Avaliação Genética

## Análise da Prolificidade

- Número de registos analisados: 117362 partos
- Prolificidade média registada: 1.04±0.20 borregos/parto
- Número de fêmeas com registos de prolificidade: **25573**
- Número de animais incluídos na matriz de parentescos: 133831
- Número de animais com estimativa de valor genético: 131634

#### Modelo utilizado na análise da Prolificidade

5

#### **Efeitos Fixos**

- □ Exploração \* Ano de parto (n=485)
- ☐ Mês de parto (Jan. a Dez.)
- ☐ Idade da ovelha ao parto (Covariável linear e quadrática)

## Análise do Peso ajustado aos 30 dias de idade

- Número de registos analisados: 67860 pesos ajustados aos 30 dias de idade
- Peso médio ao desmame registado: 8.14±1.78 kg
- Número de fêmeas mães de animais com peso ao desmame: 18782
- Número de animais incluídos na matriz de parentescos: 133831
- Número de animais com estimativa de valor genético: 123246

#### Modelo utilizado na análise do Peso ao Desmame (30 dias)

#### **Efeitos Fixos**

- □ Exploração \* Ano de parto (n=278)
- ☐ Mês de nascimento (Jan. a Dez.)
- □ Sexo do animal (Macho e Fêmea)
- ☐ Tipo de parto (Simples e Múltiplo)
- ☐ Idade da mãe ao parto (Covariável linear e quadrática)

## Análise do Peso ajustado aos 90 dias de idade

- Número de registos analisados: 31432 pesos ajustados aos 90 dias de idade
- Peso médio ao desmame registado: 17.23±4.38 kg
- Número de fêmeas mães de animais com peso ao desmame: 13875
- Número de animais incluídos na matriz de parentescos: 133831
- Número de animais com estimativa de valor genético: 123346

#### Modelo utilizado na análise do Peso ao Desmame (90 dias)

#### **Efeitos Fixos**

- □ Exploração \* Ano de parto (n=212)
- ☐ Mês de nascimento (Jan. a Dez.)
- □ Sexo do animal (Macho e Fêmea)
- ☐ Tipo de parto (Simples e Múltiplo)
- ☐ Idade da mãe ao parto (Covariável linear e quadrática)

6

## Análise da Espessura da Lã

- Número de registos analisados: 3927 avaliações
- Pontuação atribuída à espessura da lã: 1- Cruzado Forte, 2- Cruzado Médio, 3- Cruzado Fino
- Pontuação média da Espessura lã: 2.39±0.58 pontos
- Número de animais com registos de contrastes lanares: 3913
- Número de animais incluídos na matriz de parentescos: 133831
- Número de animais com estimativa de valor genético: 99545

#### Modelo utilizado na análise da Espessura da Lã

#### **Efeitos Fixos**

- □ Exploração \* Ano de contraste lanar (n=57)
- ☐ Mês de contraste lanar (Nov. a Jun.)
- □ Sexo do animal
- ☐ Idade do animal ao contraste (Covariável linear e quadrática)

## Análise do Comprimento da Lã

- Número de registos analisados: 1492 avaliações
- Comprimento médio da lã: 7.95±1.71 cm
- Número de animais com registos de contrastes lanares: 1492
- Número de animais incluídos na matriz de parentescos: 133831
- Número de animais com estimativa de valor genético: 87321

#### Modelo utilizado na análise do Comprimento da Lã

#### **Efeitos Fixos**

- □ Exploração \* Ano de contraste lanar (n=19)
- ☐ Mês de contraste lanar (Nov. a Jun.)
- Sexo do animal
- ☐ Idade do animal ao contraste (Covariável linear e quadrática)

7

## Parâmetros Genéticos e Ambientais

|                                     | <b>Prolificidade</b> (n° borregos <sup>2</sup> ) | Peso 30 dias (kg²) | Peso 90 dias (kg²) | EspessLã* (Pontos²) | CompLã* (Pontos²) |
|-------------------------------------|--------------------------------------------------|--------------------|--------------------|---------------------|-------------------|
| Variância genética direta           | 0.0010                                           | 0.376              | 3.569              | 0.042               | 0.400             |
| Covariância ef. diretos-maternos    | _                                                | -0.055             | -0.631             | _                   | _                 |
| Variância genética materna          | _                                                | 0.148              | 2.677              | _                   | _                 |
| Variância ambiental permanente      | 0.0010                                           | 0.027              | 0.024              | 0.018               | 0.100             |
| Variância ambiental                 | 0.0335                                           | 1.810              | 9.881              | 0.080               | 1.1000            |
| Variância fenotípica                | 0.0354                                           | 2.306              | 15.520             | 0.140               | 1.600             |
| Heritabilidade efeitos diretos      | 0.027                                            | 0.163              | 0.230              | 0.300               | 0.250             |
| Correlação efeitos diretos-maternos | _                                                | -0.233             | -0.204             | _                   | _                 |
| Heritabilidade efeitos maternos     | _                                                | 0.064              | 0.172              | _                   | _                 |
| Efeito ambiental permanente         | 0.028                                            | 0.012              | 0.002              | 0.129               | 0.063             |

<sup>\*</sup>Parâmetros genéticos adaptados da bibliografia